
Coding Dojo: an environment for learning and sharing Agile practices

Danilo Sato

ThoughtWorks Limited

dsato@thoughtworks.com

Hugo Corbucci, Mariana Bravo

Department of Computer Science

University of São Paulo, Brazil

{corbucci,marivb}@ime.usp.br

Abstract

A Coding Dojo is a meeting where a group of program-

mers gets together to learn, practice, and share experiences.

This report describes the authors’ experience of creating

and running an active Coding Dojo in São Paulo, Brazil,

sharing the lessons learned from the experience. The role

of the Dojo in the learning process is discussed, showing

how it creates an environment for fostering and sharing Ag-

ile practices such as Test-Driven Development, Refactoring

and Pair Programming, among others.

1 Introduction

In software we do our practicing on the job, and

that’s why we make mistakes on the job. We need

to find ways of splitting the practice from the pro-

fession. We need practice sessions.

–Dave Thomas

The idea of a Code Kata was initially proposed by Dave

Thomas as an exercise where programmers could write

throwaway code to practice their craft outside of a work-

ing environment [10]. Laurent Bossavit later proposed the

idea of a Coding Dojo: a session where a group of program-

mers would gather to solve the Code Kata together [3]. Al-

though the session is organized around a programming chal-

lenge, the main goal of a Coding Dojo is to learn from oth-

ers and improve design and coding skills through deliberate

practice. This creates a learning environment where Agile

technical practices, such as those proposed by Extreme Pro-

gramming (XP) [2], can be shared.

This report describes the authors’ experience of founding

and running a Coding Dojo in São Paulo, Brazil. Section 2

will present the concept and rules of a Coding Dojo and the

tailored process to conduct the sessions in São Paulo, im-

proved over time by retrospectives. Section 3 will present

lessons learned from the weekly meetings being held since

the first session in July, 2007. Section 4 will discuss the as-

pects of a Coding Dojo that foster learning and tacit knowl-

edge sharing, concluding in Section 5.

2 Coding Dojo

A Coding Dojo is a periodic meeting (usually weekly)

organized around a programming challenge where people

are encouraged to participate and share their coding skills

with the audience while solving the problem. The main

principles of the Coding Dojo are to create a Safe Environ-

ment which is collaborative, inclusive, and non-competitive

where people can be Continuously Learning. Some of the

XP principles align nicely with that [2], such as Failure – it

is OK to fail when learning something new – Redundancy

– one can always gain new insights when tackling the same

problem with different strategies – and Baby Steps – each

step towards the solution should be small enough so that

everybody can comprehend and replicate it later.

There are some general rules that allow the Coding Dojo

session to be productive and to flow. The meeting is held

in a room with enough space for all the participants and

usually requires only a projector and a computer or lap-

top. Having whiteboard space for sketching and design

discussions is also valuable. The participants are encour-

aged to develop the solution using Test-Driven Develop-

ment (TDD) [1] and are free to choose whichever program-

ming language they prefer. There are two main meeting

formats:

• Prepared Kata: In this format, someone has already

solved the proposed Kata prior to the meeting (alone

or in group) and the solution is presented to the audi-

ence during the session. Instead of showing the final

code and tests, the presenters start from scratch, ex-

plaining each step and allowing the other participants

to ask questions or make suggestions. The session goal

is that everyone should be able to reproduce the steps

and solve the same problem after the meeting.



• Randori: In this format, the participants solve the

problem together, following TDD and Pair Program-

ming in time-boxed rounds (usually between 5 and 7

minutes). At the end of each turn, the pilot joins the

audience, the co-pilot becomes pilot, and a new co-

pilot joins the pair from the audience. An extra rule is

that discussions and suggestions should only be given

when the pair arrives in a green bar, with all the current

tests passing. The reason is that, while on a red bar, the

pair should focus and work together to pass the tests.

The audience can always suggest refactorings and op-

timizations on a green bar.

Figure 1. A typical Dojo Randori session

These formats allow the creation of an environment

where participants can discuss and practice a wide range

of topics, such as: TDD, Behaviour-Driven Development,

Agile, Refactoring, Pair Programming, Object-Oriented

Design, Algorithms, different programming languages,

paradigms, and frameworks.

2.1 Coding Dojo@SP: History and Pro-
cess

The meetings of the São Paulo Coding Dojo started on

the 12
th of July, 2007 and have been held weekly since then

in the Institute of Mathematics and Statistics of the Univer-

sity of São Paulo. Some extra sessions were done during

the University holidays and most of the session reports are

available on the international Coding Dojo wiki[5]. The

number of participants varied from 3 to 16 and their skill

level ranged from undergraduate students to experienced

programmers.

At the first meeting the participants were asked to fill

index cards with their expectations and personal interests

in attending the sessions. An affinity map was built with

that information and the three main interests were to prac-

tice problem solving skills, to learn different ways and al-

gorithms to solve the challenges, and to learn new program-

ming languages. Some of the sessions were highly focused

on design problems and algorithms, which left less time for

writing code, but the participants liked to learn from the dis-

cussions. On the other hand, the majority of the sessions re-

quired less design and algorithms discussion, leaving more

time to write code and allowing the participants to exper-

iment with a wide range of programming languages, such

as Java, C, Ruby, Python, Lua, and Smalltalk. The sessions

usually follow the same process:

• Problem Choosing (5 to 10 minutes): Before the

meeting, the participants receive an e-mail with 3 to

5 options of problems to be solved. The problems are

chosen from several sources (such as Ruby Quiz1, Pro-

gramming Challenges2, UVa3, and SPOJ4). Each op-

tion is briefly presented and the participants vote on

which problem will be solved.

• Problem Discussion (10 to 20 minutes): Once the

problem is chosen, the group discusses the different

approaches to solving it, usually ending up with an

agreed approach and a list of TO-DO items, as pro-

posed by Kent Beck [1], to guide the pairs during the

implementation.

• Coding Session (1 to 2 hours): With an agreed ap-

proach to solve the problem, the participants start the

coding session in one of the two formats – a Prepared

Kata or a Randori. They should practice Pair Program-

ming and Test-Driven Development as a general rule.

• Retrospective (10 to 20 minutes): At the end of the

session, the participants stop coding (even if the prob-

lem was not completely solved) to reflect on the expe-

rience and share the learned lessons with the group.

Finally, the São Paulo Coding Dojo came up with two

special roles that can be rotated between participants, but

that are very important to organize and to make sure the

meetings continue to happen. The Moderator or Orga-

nizer is responsible for what happens before, during, and

after the meeting. He handles tasks such as reserving the

meeting room, sending reminders and options of problems

to be solved, setting up the computer and projector prior to

the meeting, moderating discussions, conducting the retro-

spective, and cleaning up the room after the session. The

Scribe is responsible for publishing the results of the ses-

sion and sharing it with the people that could not attend the

meeting. He handles tasks such as posting the session report

to the wiki, publishing the final source code to the group,

sometimes taking photos, and documenting the results of

the retrospective.

1http://www.rubyquiz.com/
2http://www.programming-challenges.com/
3http://acm.uva.es/p/
4http://www.spoj.pl/



3 Lessons Learned

After over 6 months of weekly meetings, the retrospec-

tives allowed the process to be improved. Section 3.1 will

discuss the aspects of the Coding Dojo that went well. Sec-

tion 3.2 will discuss the things that worked less well than

expected. Finally, in Section 3.3 the experience of running

the sessions in different contexts and to different audiences

raised some questions for further discussion.

3.1 What Went Well?

3.1.1 Retrospectives and Action Items

As described in the previous section, every meeting ends

with a short retrospective [9]. The participants receive red

and yellow sticky notes and write positive and negative as-

pects of the session. In the beginning, the group followed

the usual retrospective format, asking “What went well?”

and “What could be improved?”. These questions led peo-

ple to write items about the process used for the meetings,

such as when to choose the problem, when to change the

programming language, what laptop to use, etc. This kind

of feedback helped improve the São Paulo Coding Dojo it-

self, reaching the process described in Section 2.1.

Figure 2. Conducting the retrospective

After some time, the retrospective format changed to re-

flect the objectives of the Coding Dojo. Now participants

are asked to think about the following questions:

• “What have we learned?”: Reflecting and discussing

what was learned is an effective way to make learning

an active process and to verify that the session met its

goals.

• “What has hindered learning?”: The negative as-

pects of a meeting are discussed, and the main im-

pediments are identified. The group performs a root

cause analysis and discusses how these impediments

could be eliminated, coming up with a series of action

items. People take responsibility to handle each action

item for the next meeting, the results are recorded for

future reflection, and the effects of the change are re-

evaluated in the next retrospective.

3.1.2 The Goal is not to Finish

When the São Paulo Codingo Dojo started, the participants

agreed that one of the goals was to learn different algorithms

and approaches to problem solving. At the second meeting,

during the Randori coding session, the time-boxed rounds

became a race of who could produce more code and get

closer to solving the problem. The coding happened really

fast and soon some participants could not keep up with what

changes were made and why.

At the following retrospective, the group decided that

finishing the problem should never be the goal of a meet-

ing. More than that, it was agreed that not writing the en-

tire solution was OK, as long as the participants could learn

something from the coding session. “It’s OK not to finish”

has been one of the São Paulo Coding Dojo’s principles ever

since, and it is repeated whenever someone joins the group

or simply forgets.

With that principle in mind, the participants take time

to write clean and understandable code, and the group of-

ten does not finish implementing the entire solution to the

problems. Unlike a programming challenge or contest, go-

ing fast in a Coding Dojo session is not beneficial.

3.1.3 Time-boxing

The São Paulo Coding Dojo has always used 7 minutes

time-boxes for Randori sessions. However, for a long time

the group disrespected a bit the time-boxes. That is, if a pair

was in the middle of writing a test or finishing a refactoring,

and the group considered this activity to be short, the pair

was allowed to finish the current code before switching. At

first this took 1 or 2 minutes more, but this overtime grad-

ually increased until there was no more a time-box, but a

minimum time for each pair.

This actually made it difficult for everyone to be focused

on the big picture – the longer a pair stayed at the front, less

and less people payed attention to them. As a result, the

group decided to adopt really strict time-boxes. When the

timer rings, no matter what they are doing, the pair has to

be switched. This allowed the meetings to be more dynamic

and easier to follow.

One side-effect of this approach is that if some discus-

sion happens between the group, the current pair has less

coding time. The participants have not yet found a solution

to this, but suggested the option of having a pause requested



by anyone in the audience for a time-boxed discussion. Dur-

ing that time, the coding pair should conduct the discus-

sion and the timer is paused. Another alternative would be

to include these time-boxed discussions between each pair

change, skipping it if the group feels it is not needed.

3.1.4 Information Radiators

Since the Coding Dojo uses TDD, the coding session fol-

lows a clear “red - green - refactor” cycle. However, be-

tween discussions or distractions, the group sometimes for-

gets what is the current stage. The participants felt the need

of visual feedback of the current stage, such as an infor-

mation radiator on an XP team. Therefore, some means of

displaying information have been used and tested.

The first was a red/green window developed individually

by one of the participants. The Perl script would collect

test results pushed to a temporary file and display a color

appropriately. It proved to be an important tool for dis-

playing information about the TDD cycle and to help the

moderator during the coding session. When the program-

ming language was switched to Ruby, the group started us-

ing autotest5, which is a program that watches for changes

in the program files and automatically executes the appro-

priate tests. Then, another participant adapted a script to re-

port the autotest results in the OS notifications system, with

a little pop up on the top right corner of the screen. When

the pop up is red, it stays on the screen until it is clicked.

3.1.5 Inspiration for the Meeting

One interesting tool that was appreciated by the participants

was to have an “Inspiration Moment” prior to the discus-

sions. The moderator chooses a card from the Creative

Whack Pack [11]. Each card contained a different creativ-

ity strategy that inspired the thought process and gave in-

sights into how to approach the problem at hand. Some

examples of cards that gave insights during the discussions

were to Ask “Why?” and Ask “What if?”. After hearing

the small story contained in each card, the participants were

more willing to ask the same questions during the meeting.

Other strategies were also valuable when trying to come up

with new design ideas, such as Don’t Fall in Love with

Ideas, Simplify, and Reverse.

3.2 What Went Less Well?

3.2.1 Moderating Brazilians

As described in Section 2, one of the rules of a Randori ses-

sion is that the audience should not speak when the tests are

5http://www.zenspider.com/ZSS/Products/ZenTest

failing. A red bar is the time when the current pair is sup-

posed to practice and get to a green bar. Unless the pair asks

for help, the other participants should not give suggestions.

However, from the beginning this has been a hard rule to

follow at the São Paulo Coding Dojo. One of the problems

the participants have faced is that people talk at bad mo-

ments. The authors believe this is related to cultural aspects

of the group. Brazilian people are very communicative and

even if they do not talk to the current programming pair,

they like to chat with other peers, disturbing the focus of

the session. The moderators tried to fight that and it got

a bit better with time but it is no longer a rule. It became

more like a good practice that the moderator should remind

the participants when things start getting out of control.

3.2.2 TDD/BDD and Algorithms

A few sessions took programming problems from sources in

which traditional algorithms such as Dijkstra’s shortest path

between two nodes on a graph are the appropriate solution.

At times, these sessions turned out to be a little disappoint-

ing: even if all attendees understood the solution, they never

got to the full implementation in the given time. Moreover,

the participants found that implementing the simplest solu-

tion to make the current test pass, and drive the algorithm

through examples of the expected outcome usually required

a huge breakthrough refactoring step that maybe could not

be found if nobody had the previous knowledge of how the

algorithm works. This step usually took several turns to

be understood and implemented, during which the tests re-

mained red. It broke the Baby Steps principle and gave a

feeling that the group was not making progress.

The reason might be that complex algorithms usually re-

quire a broader knowledge experience and, unless the pro-

grammers have the steps to drive the proper implementation

in their heads, they will hardly get to a solution by simply

following TDD with examples of input and output pairs.

3.2.3 Balancing Randoris and Prepared Katas

Randori sessions are important because they provide learn-

ing and practice to all participants. Prepared Katas are also

interesting since it is usually possible for the group to ad-

vance further in the implementation of a solution. However,

it takes someone’s time outside of the Coding Dojo sessions

for a Prepared Kata to be developed and practiced. Because

of that, this kind of session is much less usual than Randori

sessions. Although sometimes the group feels the need or

opportunity for a Prepared Kata session, it is not always

easy to find a participant with availability to prepare it.



3.2.4 Programming Environment

Open source communities know the issue very well: Emacs

or VI? Each programmer has his preferred tools, environ-

ments, key sets, and shortcuts. With laptops, the problem is

also extended to hardware: each laptop according to its ori-

gin or manufacturer has a slightly different keyboard. Gath-

ering several programmers that work on different operating

systems, software, and languages causes a lot issues. Hav-

ing Apple laptops running Mac OS X with Command keys

instead of Control brought several complains from atten-

dees. Attempts to change the environment brought the same

issues to other people.

Finding an environment less hostile to attendees is still

a problem for a meeting that hopes to engage all sorts of

people. So far the issue has been addressed by trying to

stick to the same environment so that people get used to it.

3.3 What is Still Puzzling?

3.3.1 How to Reach a Wider Audience?

As discussed in Section 4, the coding sessions are a very ef-

fective way to spread knowledge among attendees. Knowl-

edge in a Coding Dojo session is similar to value in open

source software: it grows at the same pace as more people

add their own time and knowledge in. It is therefore nat-

ural to have a will to bring more and more people to the

session. But, even in free software, people do not throw in

their knowledge if there are no compensations for doing it

([8]) so the session must bring knowledge to every attendee.

The authors found that gathering more than a certain

number of individuals (about 20) in a Coding Dojo raises

serious problems. The knowledge gap tends to be greater,

leading to intimidation of certain attendees and lack of in-

terest from others. It also gives the impression of having a

slower dynamic since it takes more turns for the attendee to

code. Lastly, people feel more compelled to talk to other

attendees in the audience. The result is that people do not

agree on an implementation and keep erasing what the pre-

vious pair did. Knowledge is then not shared, progress is

not made, and the session looses its meaning.

Is it possible to fight these problems? Can one session

hold many people and still spread enough knowledge to

each attendee to have them benefit from the meeting? If not,

should the meeting be split? How to balance the attendees’

skills to have them benefit from the split?

3.3.2 How to Share Efforts with the Community?

Following the same motivation previously presented, if it

is possible to share results between Coding Dojos, it would

bring even more value to those communities. Results can be

code, software, or even practices and sharing them should

allow other communities to go a step further. The code gen-

erated on a Coding Dojo session rarely transmits the lessons

the participants experienced during the meeting to achieve

that result. What could help transmit that experience? What

tools are lacking to improve a Coding Dojo session? Do

other Coding Dojo share the same issues? If so, have they

addressed this and how?

3.3.3 How to Keep Attendees Engaged?

Since the Coding Dojo sessions should evolve with time as

attendees get more used to TDD, the language, and the en-

vironment used, it is interesting to keep a subset of partici-

pants that can ensure the normal flow of the session. What

makes attendees come back to another session? How do you

ensure that these characteristics are always present? How

do you balance this goal with the desire to have new atten-

dees bringing new ideas?

4 Dojo and Learning

The main goal of a Coding Dojo is learning through prac-

tice. Like a pianist plays scales and a martial arts student

practices basic moves, the Code Katas serve as focused ex-

ercises that allow the participants to improve on specific

skills. Ericsson et al. studied what influences the acquisi-

tion of expertise in different domains such as music, chess,

and sports [7]. They found that deliberate practice over a

long period of time (usually more than 10 years) is at the

heart of attaining expertise. Their empirical study shows

that experts carefully schedule deliberate practice and limit

its duration to avoid exhaustion and burnout. Although it

takes time to become an expert, the role of deliberate prac-

tice is still important through the learning process.

The Dreyfus Model of skill acquisition defines five de-

velopmental stages when learning a new skill: novice, com-

petence, proficiency, expertise, and mastery [6]. A novice

needs a set of pre-defined rules that can be applied with-

out previous experience on the domain. Competence comes

with experience, when the student can identify recurring

patterns and understand his environment. With increased

practice and experience, a proficient student starts to ques-

tion the guidelines and is able to apply different rules con-

sidering longer term consequences. Once the repertoire of

experienced situations becomes so vast, an expert student is

able to intuitively trigger the appropriate action for a spe-

cific situation. According to the Dreyfus model, there is

no higher level of mental capacity than expertise, but there

are moments when an expert can cease to pay conscious

attention to his performance and still produce the appropri-

ate perspective and its associated action, reaching a stage of

mastery.



Although the Coding Dojo can not provide the intuition

and unconscious competence required to achieve expertise

and mastery, deliberate practice can help participants to go

from novice to proficient. Also, since there is no single mas-

ter for all subjects, participants of different levels can share

their knowledge and improve the group as a whole.

4.1 Dojo at the University

Running the Coding Dojo at the University gave the au-

thors an example of the good impacts of the sessions in one

particular student. One of the attendees joined the Coding

Dojo since the first sessions, when he had just finished his

first semester in Computer Science. He is now on his third

semester and he uses TDD in most of his assignments, no

matter what language is being used. His latest work in-

volved implementing common sparse matrices operations

in C. He decided to implement it using TDD and a simple

testing library developed during a Coding Dojo session [4].

He was able to write clear code with full test coverage. His

ability to identify and pin down the required tests to drive

the correct implementation far surpasses his colleagues’.

He has been showing strong evidences that the knowl-

edge and practices obtained from the Coding Dojo can be

absorbed and understood regardless of prior experience on

the subject. Since such testing practices are not part of the

regular class’ program, it shows how the participation on

the Coding Dojo can help a novice to become competent.

Practices that were just followed as rules in the initial ses-

sions became more natural and could be applied to different

contexts and situations. It also shows that the informal, non-

directed, and non-rigid learning experience can be effective

and complement more traditional teaching methods.

4.2 Dojo at ThoughtWorks

More recently, one of the authors started running a Cod-

ing Dojo in a different environment: inside a company. He

took over the responsibility of running a bi-weekly meeting

called “Ruby Tuesdays”. The session’s goal was to share

knowledge about the Ruby programming language between

expert and novice developers. Although focused on a spe-

cific language, when the author became the moderator, he

made a presentation and suggested the use of a Coding Dojo

format for the meetings.

So far the results are very positive. The use of a more

structured format allowed the session to flow better and the

use of a single projector proved to help everyone follow the

same train of thought. The retrospective at the end is also

helpful to consolidate the lessons learned and to discuss

points for improvement. Running a Coding Dojo within

a company can help developers to share their interests in

particular concepts and practices, allowing the rest of the

organization to experience the benefits of applying different

techniques. It also creates a safe environment, free of nor-

mal project pressure, allowing them to conduct controlled

experiments before applying the practices on their day-to-

day work.

5 Conclusion

This report shares the experiences of running a Coding

Dojo at the University of São Paulo and, more recently,

at ThoughtWorks. The process and roles used to conduct

the meetings were improved over time based on the partic-

ipants’ feedback. By sharing the lessons learned from this

experience, the authors expect that this learning tool can be

applied to different contexts, encouraging more people to

start their own Coding Dojos. Finally, the role of a Coding

Dojo in the learning process was discussed, showing how

students at different skill levels can use deliberate practice

to improve and share knowledge with a wider group.

Acknowledgements

The authors would like to thank Prof. Dr. Alfredo Gold-

man and Prof. Dr. Fabio Kon for supporting the São Paulo

Coding Dojo sessions. A special thanks goes also to Fabri-

cio de Sousa for helping the organization of several ses-

sions. The authors are also very grateful for learning and

sharing experiences with all the Coding Dojo participants.

References

[1] K. Beck. Test Driven Development: By Example. Addison-

Wesley, 2003.
[2] K. Beck and C. Andres. Extreme Programming Explained :

Embrace Change. Addison-Wesley, 2nd edition, 2004.
[3] L. Bossavit. Object dojo. www.bossavit.com/pivot/

pivot/entry.php?id=207, 2003.
[4] Coding Dojo São Paulo - Session 31. dojo sp.

googlegroups.com/web/31-CTEST.zip, 2008.
[5] Coding Dojo Wiki. www.codingdojo.org, 2007.
[6] S. E. Dreyfus and H. L. Dreyfus. A five-stage model of the

mental activities involved in directed skill acquisition. Tech-

nical report, California University of Berkeley Operations

Research Center, 1980.
[7] K. A. Ericsson, R. T. Krampe, and C. Tesch-Römer. The

role of deliberate practice in the acquisition of expert perfor-

mance. Psychological Review, 100(3):363–406, 1993.
[8] R. A. Ghosh. Cooking pot markets: an economic model for

the trade in free goods and services on the internet. First

Monday, 3(3), 1998.
[9] N. L. Kerth. Project Retrospectives: A Handbook for Team

Reviews. Dorset House Publishing Company, 2001.
[10] D. Thomas. Code kata: How to become a better developer.

codekata.pragprog.com, 2003.
[11] R. von Oech. Creative whack pack, 1989.


