
Licenced under a Creative Commons Licence

REST and the rest of
the internet

George Malamidis (george@nutrun.com)
Danilo Sato (danilo@dtsato.com)

Please refer to the original dissertation about REST published by Roy Fielding entitled:
“Architectural Styles and the Design of Network-based Software Architectures”
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

mailto:danilo@dtsato.com
mailto:danilo@dtsato.com

Licenced under a Creative Commons Licence

Representational State Transfer is the architectural style described in Roy Fielding's
"Architectural Styles and the Design of Network-based Software Architectures" dissertation.
The design rational as proposed by REST can be viewed as the Web's architecture. With the
Rails community having openly adopted a variety of REST's defining elements, we will discuss
some of the main concepts behind REST and look at ways of how applying those can lead to
improving the way we build and deliver Websites. We will place particular interest in the
benefits and trade-offs REST principles introduce to network-based service development.
Finally, we will look at how other established Internet standards can be applied to
complement REST and potentially counter some of the trade-offs.

Licenced under a Creative Commons Licence

Data in REST

Licenced under a Creative Commons Licence

Resources

Resource is the key data abstraction in REST. Anything that can be named can qualify as a
resource. Resources refer to the concept of the data they address.

Licenced under a Creative Commons Licence

Resource Identifiers

Resources are uniquely identified and addressable by URIs/URLs.

Licenced under a Creative Commons Licence

Representations

A Resource can have multiple representations, e.g. HTML, XML, Flash, etc.

Licenced under a Creative Commons Licence

Metadata and control
media type

last-modified
if-modified-since

cache-control
...

Licenced under a Creative Commons Licence

Constraints

REST consists of a set of constraints aimed at standardizing and optimizing component
interaction over the Web. Adopting some of REST's constraints can yield numerous benefits,
although it is important to understand that most come with a number of associated trade-
offs, which implies that they shouldn't be blindly applied to every architecture.

Licenced under a Creative Commons Licence

Client-Server

The Client-Server constraint offers separation of concerns and allows the system's
components to evolve independently, e.g. Web-servers / proxies / browsers.

Licenced under a Creative Commons Licence

Statelessnessness
Visibility
Reliability
Scalability

Visibility: only the content of one request is needed to understand the request
Reliability: easier to recover from failures
Scalability: servers can free resources between requests

Licenced under a Creative Commons Licence

Cache

Caching improves efficiency and scalability by relieving server strain.
“0-th” level caching: Your resources can be cached and you application doesn’t even have to
know about it (squid, browser)

Licenced under a Creative Commons Licence

Uniform interface

Simplifies communication. Remote components have a standard way of communicating with
each other.
Verbs and Status Codes (HTTP)

Licenced under a Creative Commons Licence

Layered System

Decoupling. Promotes component independence. Scalability (Caches, load balancers, etc).

Licenced under a Creative Commons Licence

Code on Demand

E.g JavaScript, applets. Simplifies clients while making them more flexible and relieves server
load.

Licenced under a Creative Commons Licence

Hypermedia

* (non-linear) Graphics, audio, video, text and links as a non-linear medium of information.
* (Little knowledge) Hypermedia is a very powerful concept as it minimizes the amount of
knowledge of a service's structure a client needs to have
* (follow and discover) Think of visiting a Website's index page and being able to follow links
to navigate to all of the Website's resources
* (same for services) The same concept can be applied to services whose intended consumers
are not human.
* (shared understading + microformats) If your consumer is human, he is the state machine
navigating your website, if your consumer is another machine, some shared understanding of
the semantics of the data is needed

Licenced under a Creative Commons Licence

GET /songs.(html|xml)

Resources

Licenced under a Creative Commons Licence

GET /songs.(html|xml)

URI

Licenced under a Creative Commons Licence

GET /songs.(html|xml)

Multiple Representations

Licenced under a Creative Commons Licence

GET /songs.xml(html|)

Uniform Interface

Licenced under a Creative Commons Licence

GET /songs.xml(html|)
 200 OK Status Codes

Licenced under a Creative Commons Licence

GET /songs.xml(html|)
 200 OK
<songs>
 <song href="/songs/one" />
 <song href="/songs/sad_but_true" />
</songs> Hypermedia

Licenced under a Creative Commons Licence

Relaxing REST

You don’t have to support everything just because it’s REST.
If you’re just building a website, why do you need
<input type=”hidden” name=”_method” value=”delete”/>

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

HTML Forms

GET

 ✓
POST

 ✓
PUT

 POST
DELETE

 POST

Licenced under a Creative Commons Licence

405 Fail.
Facebook only POSTs to your webapp.
Servers get confused to serve static files by POST
405 Method Not Allowed

Licenced under a Creative Commons Licence

HTTP
The protocol that powers the Web

* HTTP is the most prominent implementation of REST
HTTP, the protocol that powers the Web, reflects REST's principles. Everyone who has ever
built or even visited a website has been enjoying some of the benefits on offer, long before
REST started receiving mainstream praise in development cycles. Following is a non-
exhaustive list of reasons why HTTP presents a good candidate for use in developing
network-based services.

Licenced under a Creative Commons Licence

Universally understood

By understanding and employing HTTP we can harness and reuse a plethora of software
which understands it (Web servers, proxies, load balancers, frameworks, clients, etc)

Licenced under a Creative Commons Licence

Anarchic Scalability

There is no denying the Web has scaled well. 156 million websites / 1 trillion webpages. It
has also scaled in an environment that is difficult to control or predict.

Licenced under a Creative Commons Licence

Collaboration
Unpredicted Evolvability

By offering service endpoints that respect the Web's underlying architecture, our services
encourage others to use them in unpredictable, exciting new ways (Mashups, AWS, Delicious,
Google).

Licenced under a Creative Commons Licence

Trade-offs

* It is mainstream
* But REST is not a silver bullet
* Applying REST (middleware) requires acknowledging the trade-offs

Licenced under a Creative Commons Licence

Stateless

Can decrease network performance due to repetitive requests. Polling can lead to
unnecessary requests.

Licenced under a Creative Commons Licence

Cache

Stale caches are a difficult problem to solve. Also, there are applications that, because of their
dynamic nature, don't easily lend themselves to caching. stale-while-revalidate is useful, but
is a workaround rather than a complete remedy. There are scenarios where that is not
acceptable.

Licenced under a Creative Commons Licence

Uniform Interface

Can degrade efficiency, because is generalized and not optimized to an application's specific
needs.

Licenced under a Creative Commons Licence

Layered System

Every additional layer added to a system can incur overhead and latency.

Licenced under a Creative Commons Licence

Other established
internet protocols

XMPP
BitTorrent

FTP
SMTP

There are protocols other than HTTP that have enjoyed internet scale success. Based on
context, the nature of the problem we are addressing and the environment a system is meant
to exist in, these technologies present valuable candidates for efficient network-based
systems integration, or for complementing HTTP, while remedying some of its associated
trade-offs.

Licenced under a Creative Commons Licence

Auction Watch
An imaginary example...

Licenced under a Creative Commons Licence

Auction Watch

• 1 Service

• 3000 Consumers

• Service publishes bid updates / accepts bids

• Consumers subscribe to bid updates / place
bids

• Consumers must be authorized to
communicate with the service

Licenced under a Creative Commons Licence

In HTTP...

Service publishes current price feed, consumers subscribe to feed and poll. Polling frequency
is once every 10 seconds per consumer (enforced by the service).

Licenced under a Creative Commons Licence

In HTTP...

• 6 * 60 * 24 * 3000 = 25,920,000 requests/
day

• Authorization = 25,920,000 handshakes/day

• Number of bids on the day = 20,000

• Number of unnecessary requests/
handshakes = requests/day - bids/day =
25,900,000

Licenced under a Creative Commons Licence

In HTTP...

• Average bid frequency = 86400/20000 =
4.32 seconds < 10 seconds

The 20,000 bids/day assumption

The 10 second interval polling frequency is suboptimal when it comes to consumers being
able to act on price updates in near real time.

Licenced under a Creative Commons Licence

Improvements

• ETag

• Last-Modified

• Conditional GET

• Partial GET

These reduce some unnecessary network usage, but do not reduce the number of requests,
handshakes.
Caching and reverse proxies are also commonly employed for relieving server stress,
although, due to the close to real time requirement of this scenario, configuring those
effectively can be tricky.

Licenced under a Creative Commons Licence

In SMTP...

• Ebay offers email notifications to auction
watchers

• The same could be applied to machine
consumers and eliminate unnecessary
requests

You don’t have to look very far for a push solution

Licenced under a Creative Commons Licence

In XMPP...

• Number of messages = number of bids =
20,000

• Number of handshakes = number of
connections = number of consumers =
3,000

• Number of unnecessary requests/
handshakes = 0

Service publishes updates on XMPP PubSub nodes, consumers subscribe to nodes and receive
updates as these happen.
It is important to remember that this would not be appropriate if the number of consumers
interacting with the service is outside our control. With each consumer maintaining an open
connection, the service never gets the opportunity to release system resources and there is a
finite number of persistent connections a physical infrastructure can accommodate.

Licenced under a Creative Commons Licence

Summary

Playing “Back in Black”, AC/DC as suggested by Chad Fowler :)

Licenced under a Creative Commons Licence

Summary

Playing “Back in Black”, AC/DC as suggested by Chad Fowler :)

