
Tracking the Evolution of Object-Oriented

Quality Metrics on Agile Projects

Danilo Sato, Alfredo Goldman, and Fabio Kon

Department of Computer Science
University of São Paulo, Brazil

{dtsato, gold, kon}@ime.usp.br

Abstract. The automated collection of source code metrics can help ag-
ile teams to understand the software they are producing, allowing them
to adapt their daily practices towards an environment of continuous im-
provement. This paper describes the evolution of some object-oriented
metrics in several agile projects we conducted recently in both academic
and governmental environments. We analyze seven different projects,
some where agile methods were used since the beginning and others
where some agile practices were introduced later. We analyze and com-
pare the evolution of such metrics in these projects and evaluate how the
different project context factors have impacted the source code.

Key words:Agile Methods, Extreme Programming, Object-Oriented
Metrics, Tracking

1 Introduction

In recent years, the adoption of agile methods, such as Extreme Programming
(XP) [4], in the industry has increased. The approach proposed by agile methods
is based on a set of principles and practices that value the interactions among
people collaborating to deliver high-quality software that creates business value
on a frequent basis [5]. Many metrics have been proposed to evaluate the qual-
ity of object-oriented (OO) systems, claiming that they can aid developers in
understanding design complexity, in detecting design flaws, and in predicting
certain quality outcomes such as software defects, testing, and maintenance ef-
fort [8, 11, 14]. Many empirical studies evaluated those metrics in projects from
different contexts [3, 6, 7, 10, 13, 17, 18] but there are a few in agile projects [1,
2]. This paper describes the evolution of OO metrics in seven agile projects. Our
goal is to analyze and compare the evolution of such metrics in those projects
and evaluate how the different project context factors have impacted the source
code.

The remainder of this paper is organized as follows. Section 2 describes the
projects and their adoption of agile practices. Section 3 presents the techniques
we used to collect data and the OO metrics chosen to be analyzed. Section 4
analyzes and discusses the evolution of such metrics. Finally, we conclude in
Sect. 5 providing guidelines for future work.

2 Projects

This paper analyzes five academic projects conducted in a full-semester course
on XP and two governmental projects conducted at the São Paulo State Leg-
islative Body (ALESP). Factors such as schedule, personnel experience, culture,
domain knowledge, and technical skills may differ between academic and real-
life projects. These and other factors were discussed more deeply in a recent
study [16] that classified the projects in terms of the Extreme Programming
Evaluation Framework [20]. This section will briefly describe each project, high-
lighting the relevant differences to this study as well as the different approaches
of adopting agile methods.

2.1 Academic Projects

We have been offering an XP course at the University of São Paulo since 2001 [9].
The schedule of the course demanded 6 to 8 hours of weekly work per student, on
average. All academic projects, except for projects 3 and 5, have started during
the XP class, in the first semester of 2006. The semester represents a release
and the projects were developed in 2 to 4 iterations. We recommended 1 month
iterations but the exact duration varied due to the team experience with the
technologies, holidays, and the amount of learning required by projects with a
legacy code base.

– Project 1 (Archimedes): An open source computer-aided design (CAD)
software focused on the needs of professional architects. We analyze the
initial 4 iterations.

– Project 2 (Grid Video Converter): A Web-based application that leverages
the processing power of a computational grid to convert video files among
several video encodings, qualities, and formats. We analyze the initial 3 it-
erations.

– Project 3 (Colméia): A library management system that has been devel-
oped during the last four offerings of the XP class. Here, we analyze 2 itera-
tions of the project. Other system modules were already deployed. Hence, the
team had to spend some time studying the existing system before starting
to develop the new module.

– Project 4 (Ginástica Laboral): A stand-alone application to assist in the
recovery and prevention of Repetitive Strain Injury (RSI), by frequently
alerting the user to take breaks and perform some pre-configured routines of
exercises. We analyze the initial 3 iterations.

– Project 5 (Borboleta): A mobile client-server system for hand-held devices
to assist in medical appointments provided at the patients’ home. The project
started in 2005 with three undergraduate students and new features were
implemented during the first semester of 2006. We analyze 3 iterations during
the second development phase in the XP class.

2.2 Governmental Projects

The governmental schedule demanded 30 hours of weekly work per employee. In
addition, some members of our team were working in the projects with partial-
time availability.

– Project 6 (Chinchilla): A human resources system to manage information
of all ALESP employees. This project started with initial support from our
team, by providing training and being responsible for the coach and tracker
roles. After some iterations, we started to hand over these roles to the ALESP
team and provided support through partial-time interns from our team. We
analyze the initial 8 iterations, developed from October/2005 to May/2006.

– Project 7 (SPL): A work-flow system to manage documents (bills, acts,
laws, amendments, etc.) through the legislative process. The initial develop-
ment of this system was outsourced and deployed after 2 years, when the
ALESP employees were trained and took over its maintenance. Due to the
lack of experience on the system’s technologies and to the large number of
production defects, they were struggling to provide support for end-users, to
fix defects, and to implement new features. When we were called to assist
them, we introduced some of the primary XP practices, such as Continuous
Integration, Testing (automated unit and acceptance tests), and Informa-
tive Workspace [4]. We analyze 3 iterations after the introduction of these
practices, from March/2006 to June/2006.

2.3 XP Radar Chart

To evaluate the level of adoption of the various agile practices, we conducted an
adapted version of Kreb’s survey [12]. We included questions about the adoption
of tracking, the team education, and level of experience1. The detailed results
of the survey were presented and analyzed in a recent study [16]. However, it is
important to describe the different aspects of agile adoption in each project. To
evaluate that, we chose Wake’s XP Radar Chart [19] as a good visual indicator.
Table 1 shows the XP radar chart for all projects. The value of each axis repre-
sents the average of the corresponding practices, retrieved from the survey and
rounded to the nearest integer to improve readability. Some practices overlap
multiple chart axis.

3 Metrics and Method

Chidamber and Kemerer proposed a suite of OO metrics, known as the CK
suite [8], that has been widely validated in the literature [3, 6]. Our metrics were
collected by the Eclipse Metrics plug-in2. We chose to analyze a subset of the
available metrics collected by the plug-in, comprising four of six metrics from

1 Survey available at http://www.agilcoop.org.br/portal/Artigos/Survey.pdf
2 http://metrics.sourceforge.net

Radar Axis XP Practices

ProgrammingTesting, Refactoring, and Simple
Design

Planning Small Releases, Planning Game,
Sustainable Pace, Lessons
Learned, and Tracking

Customer Testing, Planning Game, and On-
site Customer

Pair Pair Programming, Continuous
Integration, and Collective Code
Ownership

Team Continuous Integration, Testing,
Coding Standards, Metaphor,
and Lessons Learned

2

4

6

8

10

Programming

Planning

CustomerPair

Team

Project 1 Project 2 Project 3 Project 4

Project 5 Project 6 Project 7

Table 1. XP Radar Chart (some practices overlap multiple axis)

the CK suite (WMC, LCOM, DIT, and NOC) and two from Martin’s suite [14]
(AC and EC). We were also interested in controlling for size, so we analyzed
LOC and v(G).

The files were checked out from the code repository, retrieving the revisions
at the end of each iteration. The plug-in exported an XML file with raw data
about each metric that was post-processed by a Ruby script to filter production
data (ignoring test code) and generate the final statistics for each metric.

– Lines of Code (LOC): the total number of non-blank, non-comment lines
of source code in a class of the system. Scope: class.

– McCabe’s Cyclomatic Complexity (v(G)): measures the amount of de-
cision logic in a single software module. It is defined for a module (class
method) as e − n + 2, where e and n are the number of edges and nodes in
the module’s control flow graph [15]. Scope: method.

– Weighted Methods per Class (WMC): measures the complexity of classes.
It is defined as the weighted sum of all class’ methods [8]. We are using v(G)
as the weighting factor, so WMC can be calculated as

∑
ci, where ci is the

Cyclomatic Complexity of the class’ ith method. Scope: class.
– Lack of Cohesion of Methods (LCOM): measures the cohesiveness of

a class and is calculated using the Henderson-Sellers method [11]. If m(F)
is the number of methods accessing a field F , LCOM is calculated as the
average of m(F) for all fields, subtracting the number of methods m and
dividing the result by (1 − m). A low value indicates a cohesive class and a
value close to 1 indicates a lack of cohesion. Scope: class.

– Depth of Inheritance Tree (DIT): the length of the longest path from a
given class to the root class (ignoring the base Object class in Java) in the
hierarchy. Scope: class.

– Number of Children (NOC): the total number of immediate child classes
inherited by a given class. Scope: class.

– Afferent Coupling (AC): the total number of classes outside a package
that depend on classes inside the package. When calculated at the class
level, this metric is also known as the Fan-in of a class. Scope: package.

– Efferent Coupling (EC): the total number of classes inside a package that
depend on classes outside the package. When calculated at the class level,
this metric is also known as the Fan-out of a class, or as the CBO (Coupling
Between Objects) metric in the CK suite. Scope: package.

4 Results and Discussion

4.1 Size and Complexity Metrics: LOC, v(G), and WMC

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 C
la

ss
 S

iz
e

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(a) LOC

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 C
yc

lo
m

at
ic

 C
om

pl
ex

ity

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(b) v(G)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 W
M

C

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(c) WMC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 L
C

O
M

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(d) LCOM

Fig. 1. Evolution of mean values for LOC, v(G), WMC, and LCOM

The mean value of LOC, v(G), and WMC for each iteration were plotted
in Fig. 1(a), Fig. 1(b), and Fig. 1(c) respectively. The shapes of these 3 graphs
display a similar evolution. In fact, the valur of Spearman’s rank correlation
between these metrics (Table 2) shows that these metrics are highly dependent.
Several studies found that classes with higher LOC and WMC are more prone
to faults [3, 10, 17, 18].

Metrics Correlation (ρ) p-value

LOC vs. v(G) 0.861 < 0.000001

LOC vs. WMC 0.936 < 0.000001

v(G) vs. WMC 0.774 < 0.00001
Table 2. Spearman’s Rank Correlation test results

Project 7 had a significantly higher average LOC, v(G), and WMC than the
other projects. This was the project where just some agile practices were adopted.
In fact, it had the most defective XP implementation, depicted in Tab. 1. This
suggests that Project 7 will be more prone to errors and will require more testing
and maintenance effort. By comparing Project 7 with data from the literature,
we found that projects with similar mean LOC (183.27 [10] and 135.95 [17])
have a significantly lower WMC (17.36 [10] and 12.15 [17]). Other studies show
similar WMC values, but without controlling for size: 13.40 [3], 11.85, 6.81, and
10.37 [18]. These values of WMC are more consistent with the other six agile
projects, although our projects have smaller classes (lower LOC).

We can also notice a growing trend through the iterations. This tendency is
more accentuated in the initial iterations of green field projects (such as Project
1), supporting the results from Alshayeb and Li [1]. After some iterations the
growing rate seems to stabilize. The only exception was Project 5, showing a
decrease in size and complexity. This can be explained by the lack of focus on
testing and refactoring during the first development phase. The team was not
skillful on writing automated tests in J2ME before the XP class. This suggests
that testing and refactoring are good practices for controlling size and complexity
and these metrics are good indicators to be tracked by the team.

4.2 Cohesion Metric: LCOM

The mean value of LCOM for each iteration was plotted in Fig. 1(d), however
we could not draw any interesting result from this metric, due to the similar
values between all projects. In fact, the relationship between this metric and the
source code quality is controversial: while Basili et al. has shown that LCOM
was insignificant [3], Gyimóthy et al. found it to be significant [10].

4.3 Inheritance Metrics: DIT and NOC

The mean value of DIT and NOC for each iteration were plotted in Fig. 2(a) and
Fig. 2(b) respectively. The use of these metrics as predictors for fault-proness of
classes is also controversial in the literature [7, 10]. Table 3 shows the average
DIT and NOC from several studies for comparison.

None of our projects show high values for DIT or NOC, showing that the use
of inheritance was not abused. Mean values of DIT around 1.0 can be explained
by the use of frameworks such as Struts and Swing, that provide functionality
through extension of their base classes. In particular, a large part of the code base

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 D
IT

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(a) DIT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 N
O

C

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(b) NOC

Fig. 2. Evolution of mean values for DIT and NOC

Metric [3] [10] [18] A [18] B [18] C [17] [7]

DIT 1.32 3.13 1.25 1.54 0.89 1.02 0.44

NOC 0.23 0.92 0.20 0.70 0.24 N/A 0.31
Table 3. DIT and NOC mean values on the literature

from Project 5 was a mobile application, and some of its base classes inherited
directly from the J2ME UI classes, resulting in a higher value of DIT. NOC was
usually lower for green field projects, and a growing trend can be observed in
most of the projects. This can be explained by the fact that a large part of the
evolution of a system involves extending and adapting existing behavior.

4.4 Coupling Metrics: AC and EC

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 A
C

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(a) AC

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 E
C

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

(b) EC

Fig. 3. Evolution of mean values for AC and EC

The mean value of AC and EC for each iteration were plotted in Fig. 3(a)
and Fig. 3(b) respectively. The shapes of these 2 graphs display a similar evo-
lution. In fact, there is a high dependency between these metrics. Spearman’s

rank correlation of 0.971 was determined with statistical significance at a 95%
confidence level (p-value < 10−14). Unfortunately, we can not compare our re-
sults with other studies because we used different coupling metrics at a different
scope level (package). The most usual metric in the literature is CBO, which is
similar to EC but calculated at the class level.

Project 7 have again a higher average AC and EC than the other projects.
Binkley and Schach found that coupling measures are good predictors for main-
tenance effort [6]. In this case, due to the outsourced development, the team
was already struggling with maintenance. There were also no automated tests to
act as a safety net for changing the source code. We had some improvements in
the adoption of Continuous Integration [16] by automating the build and deploy
process, but the adoption of automated testing was not very successful. Writing
unit tests for a large legacy code project is much harder and requires technical
skills. However, we had some success on the adoption of automated acceptance
tests with Selenium3 and Selenium IDE3.

5 Conclusions

In this paper, we analyzed the evolution of eight OO metrics in seven projects
with different adoption approaches of agile methods. By comparing our results
with others in the literature, we found that the project with less agile practices
in place (Project 7) presented higher size, complexity, and coupling measures
(LOC, v(G), WMC, AC, and EC), suggesting that it would be more prone to
defects and would require more testing and maintenance efforts. We also found
that there is a high correlation between size and complexity metrics (LOC, v(G)
and WMC) and coupling metrics (AC and EC). We think that the automated
collection of these metrics can support the tracker of an agile team, acting as
good indicators of source code quality attributes, such as size (LOC), complexity
(WMC), and coupling (AC and EC). In our study we found that these curves are
smooth, and changes to the curves can indicate the progress, or lack of progress,
on practices such as testing and refactoring.

In future work, we plan to gather more data from different agile projects. We
are interested in measuring defects and bugs after deployment to analyze their
relationship with the collected metrics. We are also interested in studying similar
projects, adopting agile and non-agile methods, to understand the impact of the
development process on the evolution of the OO metrics.

References

1. Mohammad Alshayeb and Wei Li. An empirical validation of object-oriented met-
rics in two different iterative software processes. IEEE Transactions on Software
Engineering, 29(11):1043–1049, 2003.

3 http://www.openqa.org/selenium and http://www.openqa.org/selenium-ide

2. Walter Ambu, Giulio Concas, Michele Marchesi, and Sandro Pinna. Studying the
evolution of quality metrics in an agile/distributed project. In 7th International
Conference on Extreme Programming and Agile Processes in Software Engineering
(XP ’06), pages 85–93, 2006.

3. Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on Software En-
gineering, 22(10):751–761, 1996.

4. Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2nd edition, 2004.

5. Kent Beck et al. Manifesto for agile software development. http://

agilemanifesto.org, Feb. 2001. Last Access: Jan. 2007.
6. Aaron B. Binkley and Stephen R. Schach. Validation of the coupling dependency

metric as a predictor of run-time failures and maintenance measures. In 20th
International Conference on Software Engineering, pages 452–455, 1998.

7. Michelle Cartwright and Martin Shepperd. An empirical investigation of an object-
oriented software system. IEEE Transactions on Software Engineering, 26(7):786–
796, 2000.

8. Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

9. Alfredo Goldman, Fabio Kon, Paulo J. S. Silva, and Joe Yoder. Being extreme
in the classroom: Experiences teaching XP. Journal of the Brazilian Computer
Society, 10(2):1–17, 2004.

10. Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Transactions
on Software Engineering, 31(10):897–910, 2005.

11. Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Pren-
tice Hall PTR, 1996.

12. William Krebs. Turning the knobs: A coaching pattern for XP through agile
metrics. In Extreme Programming and Agile Methods - XP/Agile Universe 2002,
pages 60–69, 2002.

13. Wei Li and Sallie Henry. Object oriented metrics that predict maintainability. J.
Systems and Software, 23:111–122, 1993.

14. Robert C. Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, 2002.

15. Thomas J. McCabe and Arthur H. Watson. Software complexity. Crosstalk: Jour-
nal of Defense Software Engineering, 7:5–9, 1994.

16. Danilo Sato, Dairton Bassi, Mariana Bravo, Alfredo Goldman, and Fabio Kon.
Experiences tracking agile projects: an empirical study. To be published in: Journal
of the Brazilian Computer Society, 2007. http://www.dtsato.com/resources/

default/jbcs-ese-2007.pdf.
17. Ramanath Subramanyam and M.S. Krishnan. Empirical analysis of CK metrics

for object-oriented design complexity: Implications for software defects. IEEE
Transactions on Software Engineering, 29(4):297–310, 2003.

18. Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen. An empirical study on
object-oriented metrics. In 6th International Software Metrics Symposium, pages
242–249, 1999.

19. William Wake. XP radar chart. http://www.xp123.com/xplor/xp0012b/index.

shtml, Jan. 2001. Last Access: Jan. 2007.
20. Laurie Williams, Lucas Layman, and William Krebs. Extreme Programming eval-

uation framework for object-oriented languages – version 1.4. Technical report,
North Carolina State University Department of Computer Science, 2004.

